V = 2730.3 (3) Å³

Mo $K\alpha$ radiation $\mu = 0.89 \text{ mm}^{-3}$

9483 measured reflections

2682 independent reflections 2357 reflections with $I > 2\sigma(I)$

T = 120 (2) K $0.23 \times 0.11 \times 0.05 \text{ mm}$

 $R_{\rm int} = 0.055$

Z = 4

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(7Z,7'Z)-2,2-Dimethyl-7,7'-(1,2,4-trithiolane-3.5-divlidene)bis[guinolin-8(7H)-one] chloroform disolvate

Jaroslaw Chojnacki,^a* Patrycja Skop,^b Agnieszka Pladzyk^a and Jacek E. Nycz^b

^aChemical Faculty, Gdansk University of Technology, Narutowicza 11/12, PL-80952 Gdansk, Poland, and ^bDepartment of Organic Chemistry, University of Silesia, PI-40006 Katowice, Poland

Correspondence e-mail: jaroslaw.chojnacki@chem.pg.gda.pl

Received 31 October 2007; accepted 12 November 2007

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.005 Å; R factor = 0.054; wR factor = 0.127; data-to-parameter ratio = 15.9.

The title compound, C₂₂H₁₄N₂O₂S₃·2CHCl₃, was obtained unintentionally as the product of the reaction between the potassium salt of 8-hydroxy-2-methylquinoline-7-carbodithioic acid and $M[OOCCF_3]_2$ (M = Mg, Mn). Oxidation and sulfur elimination processes caused condensation of two acid molecules with the formation of an aromatic fivemembered heterocycle S_3C_2 (trithiolane). The molecule shows local symmetry 2 (Schoenflies C_2) with the twofold rotation axis passing through the trithiolane ring. The two aromatic systems are essentially planar. The molecules possess the 7Z,7'Z conformation with respect to the unsaturated vinyl groups. The compound cocrystallizes with CHCl₃, which is bound by weak bifurcated $C-H \cdots O(N)$ hydrogen bonds. The packing of molecules in the structure is stabilized by $\pi - \pi$ stacking interactions.

Related literature

For the related structure 3,5-bis(2-tetralonyliden)-1,2,4trithiole, see: Gonzalez-Castro et al. (2000). For related literature, see: Lee et al. (2005).

Experimental

Crystal data

$C_{22}H_{14}N_2O_2S_3$ ·2CHCl ₃	
$M_r = 673.27$	
Monoclinic, $C2/c$	
a = 23.7359 (13) Å	
b = 10.6749 (6) Å	
c = 11.1128 (6) Å	
$\beta = 104.149 \ (5)^{\circ}$	

Data collection

Refinement

ł ν

S 2

$R[F^2 > 2\sigma(F^2)] = 0.054$	169 parameters
$\nu R(F^2) = 0.127$	H-atom parameters constrained
1 = 1.12	$\Delta \rho_{\rm max} = 0.59 \ {\rm e} \ {\rm \AA}^{-3}$
682 reflections	$\Delta \rho_{\rm min} = -0.40 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond	geometry	(A,	°).	
---------------	----------	-----	-----	--

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C3-H3···S1	0.93	2.64	3.032 (3)	106
C12-H12···O1	0.98	2.37	3.136 (4)	135
C12-H12···N1	0.98	2.40	3.294 (4)	152

Table 2

Main $\pi - \pi$ interactions (Å,°).

DA is the dihedral angle between the planes, DCC is the length of the CC vector (centroid-to-centroid), τ is the angle(s) subtended by the plane normal(s) to CC. Cg1 is the centroid of ring S1/C10/S2/S2ⁱ/C10ⁱ and Cg2 is the centroid of ring C1-C5/C9.

Group 1	Group 2	DA	DCC	τ	
Cg1	$Cg2^{i}$	3.62	3.650 (2)	16.31	
Cg1	$Cg2^{ii}$	3.62	3.650 (2)	16.31	

Symmetry codes: (i) -x, 1 - y, 1 - z; (ii) x, 1 - y, 1/2 + z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999) and PLATON (Spek, 2003).

Financial support from the Polish State Committee of Scientific Research (project No. 3 T09A 120 28) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2267).

References

- Farrugia, L. J. (1997). J. Appl. Cryst. **30**, 565. Farrugia, L. J. (1999). J. Appl. Cryst. **32**, 837–838.
- Gonzalez-Castro, A., Gutierrez-Perez, R., Penieres-Carrillo, G., Diaz-Torres, E., Toscano, R. A., Moya-Cabrera, M., Cabrera-Ortiz, A. & Alvarez-Toledano, C. (2000). *Heteroat. Chem.* **11**, 120–128.

Lee, J. K., Choi, E. H., Lee, K. G. & Chun, H. S. (2005). Life Sci. 77, 2896–2910. Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions 1.171. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.

Sheldrick, G. M. (1997). *SHELXL97* and *SHELXS97*. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

Acta Cryst. (2007). E63, o4773-o4774 [doi:10.1107/S1600536807058217]

(7*Z*,7'*Z*)-2,2-Dimethyl-7,7'-(1,2,4-trithiolane-3,5-diylidene)bis[quinolin-8(7*H*)-one] chloroform disolvate

J. Chojnacki, P. Skop, A. Pladzyk and J. E. Nycz

Comment

The title compound, $[C_{22}H_{14}N_2O_2S_3, 2(CHCl_3)]$, was obtained unintentionally as the product of the reactions between potassium salt of 8-hydroxy-2-methylquinoline-7-carbodithioic acid and $M[OOCCF_3]_2$ (M = Mg, Mn). Oxidation and sulfur elimination processes caused condensation of two acid molecules with the formation of aromatic five-membered heterocycle S_3C_2 (trithiolane). The mechanism of formation of the title compound is not fully recognized. Its structural novelty suggests considerable potential as functionalized ligand interesting in organometallic chemistry and it seems probable to be important as bioactive molecules. Naturally occurring trithiolanes (*e.g.* in garlic) significantly inhibited the formation of intracellular reactive oxygen species (Lee *et al.*, 2005). The heterocycle is stabilized by extended delocalization of electrons in conjugated aromatic systems. Molecules possess the (7Z,7'Z) conformation with respect to the unsaturated vinyls (C2—C10). The same product was obtained using Mg and Mn salt. In the related derivative, 3,5-bis(2-tetralonyliden)-1,2,4-trithiole, also Z,Z' conformation was determined (Gonzalez-Castro *et al.*, 2000). Valence angles on sulfur in (I) are close to the values reported there (99.74 ° for S—S—C and 103.02 ° for C—S—C). It seems that relatively acute angles on sulfur atoms (due to assumed lack of hybridization of sulfur orbitals) lead to the low tensed 5-membered ring, which explains the ease of formation of the central heterocycle.

 $C_{22}H_{14}N_2O_2S_3$ molecule shows local symmetry 2 (Schoenflies C_2) with the twofold axis passing through the trithiolane ring. It is essentially planar, with root mean square deviation of atoms from the S1,S2,C1—C11,N1,O1 plane being only 0.0286 Å. Maximum deviation from the plane is shown by S2 atom and it is equal to -0.0594(0.0015) Å.

Packing of molecules in the structure is stabilized by π - π stacking interactions (see Table 2.). Compound cocrystallized with CHCl₃ which is bound by weak C—H···O(N) bifurcated hydrogen bonds.

Experimental

To the suspension of 8-hydroxy-2-methylquinoline-7-carbodithioic acid (2.350 g, 10.0 mmol) in H₂O (50 ml), K₂CO₃ (1.380 g, 10.0 mmol) was added and stirred up to the disappearance of the solid material. Subsequently, M[OOCCF₃] (M = Mg, Mn) (10.0 mmol) was slowly added. The reaction was carried out for 16 h at room temperature. Next the liquid reaction mixture was filtered off and the brown crude product was dryied over P₂O₅. Final purification by crystallization from CHCl₃ gave material suitable for the *x*-ray structural analysis.

Refinement

All H atoms were treated as riding on their parent C atoms with methyl C–H = 0.96 Å, chloroform C–H = 0.98 Å, aromatic C–H = 0.93 Å and U_{iso} (H)=1.2 U_{eq} (C) for aromatic CH and CHCl₃ and 1.5 for methyl groups. No disorder has been found.

Figures

Fig. 1. View of (I) including the solvent linked through C—H···O and C—H···N hydrogen bonds with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

(7Z,7¹Z)-2,2-Dimethyl-7,7¹-(1,2,4-trithiolane-3,5-diylidene)bis[quinolin-8(7H)-one] chloroform disolvate

Crystal data	
$C_{22}H_{14}N_2O_2S_3$ ·2CHCl ₃	$F_{000} = 1360$
$M_r = 673.27$	$D_{\rm x} = 1.638 {\rm ~Mg~m}^{-3}$
Monoclinic, C2/c	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 6056 reflections
<i>a</i> = 23.7359 (13) Å	$\theta = 30.6 - 1.5^{\circ}$
b = 10.6749 (6) Å	$\mu = 0.89 \text{ mm}^{-1}$
c = 11.1128 (6) Å	T = 120 (2) K
$\beta = 104.149 \ (5)^{\circ}$	Prism, red
$V = 2730.3 (3) \text{ Å}^3$	$0.23\times0.11\times0.05~mm$
Z = 4	

Data collection

KM4CCD, Oxford Diffraction diffractometer	2357 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.055$
T = 120 K	$\theta_{\rm max} = 26^{\circ}$
$0.75^{\circ} \omega$ scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: numerical (CrysAlis RED; Oxford Diffraction, 2006)	$h = -29 \rightarrow 29$
$T_{\min} = 0.867, T_{\max} = 0.963$	$k = -13 \rightarrow 12$
9483 measured reflections	$l = -13 \rightarrow 12$
2682 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.054$	H-atom parameters constrained
$wR(F^2) = 0.127$	$w = 1/[\sigma^2(F_o^2) + (0.053P)^2 + 10.8805P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.12	$(\Delta/\sigma)_{\rm max} = 0.005$
2682 reflections	$\Delta \rho_{max} = 0.59 \text{ e } \text{\AA}^{-3}$
169 parameters	$\Delta \rho_{\rm min} = -0.40 \text{ e Å}^{-3}$

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

S2

N1

01

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.5000	-0.02872 (10)	0.2500	0.0174 (3)
S2	0.46838 (4)	0.23246 (7)	0.30370 (8)	0.0183 (2)
N1	0.32997 (13)	0.1448 (3)	0.5839 (3)	0.0188 (6)
01	0.39897 (11)	0.2266 (2)	0.4329 (2)	0.0222 (5)
C1	0.39538 (15)	0.1118 (3)	0.4513 (3)	0.0172 (7)
C2	0.42747 (15)	0.0229 (3)	0.3960 (3)	0.0161 (7)
C3	0.42230 (15)	-0.1102 (3)	0.4154 (3)	0.0192 (7)
H3	0.4425	-0.1664	0.3776	0.023*
C4	0.38870 (15)	-0.1536 (3)	0.4873 (3)	0.0190 (7)
H4	0.3863	-0.2395	0.4988	0.023*
C5	0.35623 (14)	-0.0699 (3)	0.5473 (3)	0.0164 (7)
C6	0.32260 (15)	-0.1123 (3)	0.6273 (3)	0.0209 (7)
H6	0.3204	-0.1973	0.6437	0.025*
C7	0.29310 (15)	-0.0268 (3)	0.6809 (3)	0.0203 (7)
H7	0.2703	-0.0539	0.7329	0.024*
C8	0.29742 (15)	0.1021 (3)	0.6570 (3)	0.0201 (7)
C9	0.35899 (14)	0.0610 (3)	0.5305 (3)	0.0162 (7)
C10	0.46249 (14)	0.0732 (3)	0.3239 (3)	0.0160 (6)
C11	0.26353 (17)	0.1970 (3)	0.7105 (4)	0.0282 (8)
H11A	0.2813	0.2779	0.7113	0.042*
H11B	0.2633	0.1734	0.7937	0.042*
H11C	0.2243	0.2004	0.6606	0.042*
C12	0.38385 (16)	0.4303 (3)	0.6259 (3)	0.0219 (7)
H12	0.3788	0.3427	0.5991	0.026*
Cl1	0.32240 (4)	0.51737 (9)	0.54728 (9)	0.0323 (3)
Cl2	0.39044 (5)	0.43802 (10)	0.78724 (8)	0.0365 (3)
Cl3	0.44742 (4)	0.49030 (9)	0.59141 (8)	0.0295 (2)

Atomic displacement parameters (\AA^2)					
	U^{11}	U^{22}	U ³³	U^{12}	
S1	0.0206 (6)	0.0128 (5)	0.0219 (6)	0.000	

0.0134 (4)

0.0185 (14)

0.0155 (11)

0.0231 (4)

0.0187 (14)

0.0253 (13)

0.0218 (4)

0.0201 (15)

0.0299 (14)

 U^{13}

0.0000 (3)

-0.0012 (12)

-0.0025(10)

0.0114 (5)

0.0118 (3)

0.0069(12)

0.0144 (11)

supplementary materials

C1	0.0178 (17)	0.0157 (15)	0.0173 (16)	0.0004 (13)	0.0028 (13)	0.0009 (12)
C2	0.0141 (16)	0.0183 (15)	0.0164 (15)	-0.0018 (13)	0.0048 (13)	-0.0015 (12)
C3	0.0204 (18)	0.0174 (16)	0.0217 (17)	-0.0004 (13)	0.0089 (14)	-0.0005 (13)
C4	0.0183 (17)	0.0142 (15)	0.0254 (17)	-0.0005 (13)	0.0074 (14)	0.0003 (13)
C5	0.0148 (16)	0.0175 (15)	0.0157 (15)	-0.0020 (13)	0.0015 (13)	0.0009 (12)
C6	0.0211 (18)	0.0183 (16)	0.0234 (17)	-0.0016 (13)	0.0060 (14)	0.0026 (14)
C7	0.0160 (17)	0.0256 (17)	0.0208 (17)	-0.0018 (14)	0.0076 (14)	0.0030 (14)
C8	0.0176 (17)	0.0227 (17)	0.0204 (16)	0.0004 (14)	0.0056 (14)	-0.0026 (14)
C9	0.0145 (16)	0.0177 (15)	0.0162 (15)	-0.0003 (13)	0.0032 (13)	-0.0010 (13)
C10	0.0155 (16)	0.0149 (15)	0.0178 (15)	-0.0008 (13)	0.0046 (13)	-0.0009 (12)
C11	0.031 (2)	0.0263 (18)	0.034 (2)	0.0012 (16)	0.0195 (17)	-0.0018 (16)
C12	0.029 (2)	0.0193 (17)	0.0181 (16)	-0.0035 (14)	0.0078 (14)	-0.0009 (13)
Cl1	0.0272 (5)	0.0319 (5)	0.0356 (5)	0.0022 (4)	0.0036 (4)	0.0045 (4)
Cl2	0.0503 (7)	0.0422 (6)	0.0191 (4)	-0.0079 (5)	0.0125 (4)	0.0023 (4)
C13	0.0260 (5)	0.0393 (5)	0.0240 (5)	-0.0087 (4)	0.0075 (4)	-0.0044 (4)

Geometric parameters (Å, °)

S1—C10 ⁱ	1.735 (3)	C5—C6	1.406 (5)
S1—C10	1.735 (3)	С5—С9	1.414 (5)
S2—C10	1.725 (3)	C6—C7	1.371 (5)
S2—S2 ⁱ	2.1338 (16)	С6—Н6	0.9300
N1—C8	1.331 (4)	C7—C8	1.410 (5)
N1—C9	1.351 (4)	С7—Н7	0.9300
O1—C1	1.248 (4)	C8—C11	1.503 (5)
C1—C2	1.445 (5)	C11—H11A	0.9600
C1—C9	1.479 (5)	C11—H11B	0.9600
C2—C10	1.395 (5)	C11—H11C	0.9600
C2—C3	1.447 (4)	C12—Cl2	1.763 (3)
C3—C4	1.342 (5)	C12—Cl3	1.765 (4)
С3—Н3	0.9300	C12—Cl1	1.769 (4)
C4—C5	1.445 (5)	C12—H12	0.9800
C4—H4	0.9300		
C10 ⁱ —S1—C10	102.3 (2)	С8—С7—Н7	120.0
C10 ⁱ —S1—C10 C10—S2—S2 ⁱ	102.3 (2) 99.41 (11)	C8—C7—H7 N1—C8—C7	120.0 121.9 (3)
C10 ⁱ —S1—C10 C10—S2—S2 ⁱ C8—N1—C9	102.3 (2) 99.41 (11) 118.4 (3)	C8—C7—H7 N1—C8—C7 N1—C8—C11	120.0 121.9 (3) 117.2 (3)
C10 ⁱ —S1—C10 C10—S2—S2 ⁱ C8—N1—C9 O1—C1—C2	102.3 (2) 99.41 (11) 118.4 (3) 120.8 (3)	C8—C7—H7 N1—C8—C7 N1—C8—C11 C7—C8—C11	120.0 121.9 (3) 117.2 (3) 120.8 (3)
C10 ⁱ —S1—C10 C10—S2—S2 ⁱ C8—N1—C9 O1—C1—C2 O1—C1—C9	102.3 (2) 99.41 (11) 118.4 (3) 120.8 (3) 122.0 (3)	C8—C7—H7 N1—C8—C7 N1—C8—C11 C7—C8—C11 N1—C9—C5	120.0 121.9 (3) 117.2 (3) 120.8 (3) 123.5 (3)
C10 ⁱ —S1—C10 C10—S2—S2 ⁱ C8—N1—C9 O1—C1—C2 O1—C1—C9 C2—C1—C9	102.3 (2) 99.41 (11) 118.4 (3) 120.8 (3) 122.0 (3) 117.2 (3)	C8—C7—H7 N1—C8—C7 N1—C8—C11 C7—C8—C11 N1—C9—C5 N1—C9—C1	120.0 121.9 (3) 117.2 (3) 120.8 (3) 123.5 (3) 117.0 (3)
C10 ⁱ —S1—C10 C10—S2—S2 ⁱ C8—N1—C9 O1—C1—C2 O1—C1—C9 C2—C1—C9 C10—C2—C1	102.3 (2) 99.41 (11) 118.4 (3) 120.8 (3) 122.0 (3) 117.2 (3) 116.2 (3)	C8—C7—H7 N1—C8—C7 N1—C8—C11 C7—C8—C11 N1—C9—C5 N1—C9—C1 C5—C9—C1	120.0 121.9 (3) 117.2 (3) 120.8 (3) 123.5 (3) 117.0 (3) 119.6 (3)
C10 ⁱ —S1—C10 C10—S2—S2 ⁱ C8—N1—C9 O1—C1—C2 O1—C1—C9 C2—C1—C9 C10—C2—C1 C10—C2—C1	102.3 (2) 99.41 (11) 118.4 (3) 120.8 (3) 122.0 (3) 117.2 (3) 116.2 (3) 123.2 (3)	C8—C7—H7 N1—C8—C7 N1—C8—C11 C7—C8—C11 N1—C9—C5 N1—C9—C1 C5—C9—C1 C2—C10—S2	120.0 121.9 (3) 117.2 (3) 120.8 (3) 123.5 (3) 117.0 (3) 119.6 (3) 122.2 (2)
C10 ⁱ —S1—C10 C10—S2—S2 ⁱ C8—N1—C9 O1—C1—C2 O1—C1—C9 C2—C1—C9 C10—C2—C1 C10—C2—C3 C1—C2—C3	102.3 (2) 99.41 (11) 118.4 (3) 120.8 (3) 122.0 (3) 117.2 (3) 116.2 (3) 123.2 (3) 120.6 (3)	C8—C7—H7 N1—C8—C7 N1—C8—C11 C7—C8—C11 N1—C9—C5 N1—C9—C1 C5—C9—C1 C2—C10—S2 C2—C10—S1	120.0 121.9 (3) 117.2 (3) 120.8 (3) 123.5 (3) 117.0 (3) 119.6 (3) 122.2 (2) 118.5 (2)
$C10^{i} - S1 - C10$ $C10 - S2 - S2^{i}$ $C8 - N1 - C9$ $O1 - C1 - C2$ $O1 - C1 - C9$ $C2 - C1 - C9$ $C10 - C2 - C1$ $C10 - C2 - C3$ $C1 - C2 - C3$ $C4 - C3 - C2$	102.3 (2) 99.41 (11) 118.4 (3) 120.8 (3) 122.0 (3) 117.2 (3) 116.2 (3) 123.2 (3) 120.6 (3) 120.8 (3)	C8—C7—H7 N1—C8—C7 N1—C8—C11 C7—C8—C11 N1—C9—C5 N1—C9—C1 C5—C9—C1 C2—C10—S2 C2—C10—S1 S2—C10—S1	120.0 121.9 (3) 117.2 (3) 120.8 (3) 123.5 (3) 117.0 (3) 119.6 (3) 122.2 (2) 118.5 (2) 119.27 (19)
C10 ⁱ —S1—C10 C10—S2—S2 ⁱ C8—N1—C9 O1—C1—C2 O1—C1—C9 C2—C1—C9 C10—C2—C1 C10—C2—C3 C1—C2—C3 C4—C3—C2 C4—C3—H3	102.3 (2) 99.41 (11) 118.4 (3) 120.8 (3) 122.0 (3) 117.2 (3) 116.2 (3) 123.2 (3) 120.6 (3) 120.8 (3) 119.6	C8—C7—H7 N1—C8—C7 N1—C8—C11 C7—C8—C11 N1—C9—C5 N1—C9—C1 C5—C9—C1 C2—C10—S2 C2—C10—S1 S2—C10—S1 C8—C11—H11A	120.0 121.9 (3) 117.2 (3) 120.8 (3) 123.5 (3) 117.0 (3) 119.6 (3) 122.2 (2) 118.5 (2) 119.27 (19) 109.5
$C10^{i} - S1 - C10$ $C10 - S2 - S2^{i}$ $C8 - N1 - C9$ $O1 - C1 - C2$ $O1 - C1 - C9$ $C2 - C1 - C9$ $C10 - C2 - C1$ $C10 - C2 - C3$ $C1 - C2 - C3$ $C4 - C3 - C2$ $C4 - C3 - H3$ $C2 - C3 - H3$	102.3 (2) 99.41 (11) 118.4 (3) 120.8 (3) 122.0 (3) 117.2 (3) 116.2 (3) 123.2 (3) 120.6 (3) 120.8 (3) 119.6 119.6	C8—C7—H7 N1—C8—C7 N1—C8—C11 C7—C8—C11 N1—C9—C5 N1—C9—C1 C5—C9—C1 C2—C10—S2 C2—C10—S1 S2—C10—S1 C8—C11—H11A C8—C11—H11B	120.0 121.9 (3) 117.2 (3) 120.8 (3) 123.5 (3) 117.0 (3) 119.6 (3) 122.2 (2) 118.5 (2) 119.27 (19) 109.5 109.5
$C10^{i} - S1 - C10$ $C10 - S2 - S2^{i}$ $C8 - N1 - C9$ $O1 - C1 - C2$ $O1 - C1 - C9$ $C2 - C1 - C9$ $C10 - C2 - C1$ $C10 - C2 - C3$ $C1 - C2 - C3$ $C4 - C3 - C2$ $C4 - C3 - H3$ $C2 - C3 - H3$ $C3 - C4 - C5$	102.3 (2) 99.41 (11) 118.4 (3) 120.8 (3) 122.0 (3) 117.2 (3) 116.2 (3) 123.2 (3) 120.6 (3) 120.8 (3) 119.6 119.6 121.6 (3)	C8—C7—H7 N1—C8—C7 N1—C8—C11 C7—C8—C11 N1—C9—C5 N1—C9—C1 C5—C9—C1 C2—C10—S2 C2—C10—S1 S2—C10—S1 C8—C11—H11A C8—C11—H11B H11A—C11—H11B	120.0 121.9 (3) 117.2 (3) 120.8 (3) 123.5 (3) 117.0 (3) 119.6 (3) 122.2 (2) 118.5 (2) 119.27 (19) 109.5 109.5
$C10^{i} - S1 - C10$ $C10 - S2 - S2^{i}$ $C8 - N1 - C9$ $O1 - C1 - C2$ $O1 - C1 - C9$ $C2 - C1 - C9$ $C10 - C2 - C1$ $C10 - C2 - C3$ $C1 - C2 - C3$ $C4 - C3 - C2$ $C4 - C3 - H3$ $C2 - C3 - H3$ $C3 - C4 - C5$ $C3 - C4 - H4$	102.3 (2) 99.41 (11) 118.4 (3) 120.8 (3) 122.0 (3) 117.2 (3) 116.2 (3) 123.2 (3) 120.6 (3) 120.8 (3) 119.6 119.6 119.6 119.2	C8—C7—H7 N1—C8—C7 N1—C8—C11 C7—C8—C11 N1—C9—C5 N1—C9—C1 C5—C9—C1 C2—C10—S2 C2—C10—S1 S2—C10—S1 C8—C11—H11A C8—C11—H11B H11A—C11—H11B C8—C11—H11B	120.0 121.9 (3) 117.2 (3) 120.8 (3) 123.5 (3) 117.0 (3) 119.6 (3) 122.2 (2) 118.5 (2) 119.27 (19) 109.5 109.5 109.5

supplementary materials

C6—C5—C9	116.9 (3)	H11B—C11—H11C	109.5
C6—C5—C4	122.8 (3)	Cl2—Cl2—Cl3	109.62 (19)
C9—C5—C4	120.2 (3)	Cl2—Cl2—Cl1	109.6 (2)
C7—C6—C5	119.3 (3)	Cl3—Cl2—Cl1	110.34 (19)
С7—С6—Н6	120.3	Cl2—C12—H12	109.1
С5—С6—Н6	120.3	Cl3—C12—H12	109.1
C6—C7—C8	119.9 (3)	Cl1—C12—H12	109.1
С6—С7—Н7	120.0		
Symmetry codes: (i) $-x+1$, y , $-z+1/2$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C3—H3…S1	0.93	2.64	3.032 (3)	106
C12—H12…O1	0.98	2.37	3.136 (4)	135
C12—H12…N1	0.98	2.40	3.294 (4)	152

Main π - π *interactions in (I) (Å*, °)

DA is dihedral angle between the planes, *DCC* is the length of the *CC* vector (centroid to centroid), τ is the angle(s) subtended by the plane normal(s) to *CC*. *Cg1* is the centroid of ring S1-C10-S2-S2ⁱ-C10ⁱ, *Cg2* of ring C1–C5/C9.

Group 1	Group 2	DA	DCC	τ
Cg1	Cg2 ⁱ	3.62	3.650 (2)	16.31
Cg1	Cg2 ⁱⁱ	3.62	3.650 (2)	16.31
Symmetry codes:	(i) -x, 1 - y, 1 - z; (ii) x, 1	-y, 1/2 + z		

Fig. 1

